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Abstract. We investigate kinetics of nematic-isotropic transition by solving the hydrodynamic equations
for the nematic 3 × 3 tensor order parameter Qαβ and the fluid velocity in two space dimension (x-y
plane). Numerical results indicate that nematic directors tend to align parallel to the x-y plane when
hydrodynamic flow is incorporated. Late stage growth exponents, φc for the correlation length and φdef for
the number of topological defects, are not significantly altered by hydrodynamic flow. However, in contrast
to the case without flow, the relation φdef = −2φc holds well, which may indicate the validity of dynamical
scaling for the case with hydrodynamic flow.

PACS. 64.70.Md Transitions in liquid crystals – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems

Phase ordering kinetics of liquid crystal systems un-
dergoing nematic-isotropic transition has attracted con-
siderable experimental interest [1,2]. Liquid crystal sys-
tems can be characterized by a tensor order parameter
[3], so they constitute a unique example of systems with
continuous symmetry [4]. So far most of extensive theoret-
ical [5,6] and numerical [7–10] efforts have been focused
on vector models. Recently Zapotocky et al. [11] studied
kinetics of uniaxial and biaxial nematic systems by numer-
ically solving time-dependent Ginzburg-Landau equations
which describe time evolution of a tensor order parameter
without the velocity field. However, the hydrodynamic in-
teraction often crucially influences phase transition kinet-
ics. For example, it has been shown theoretically [12–14]
and numerically [15–18] that hydrodynamic flow governs
late stage phase separation kinetics in binary fluid mix-
tures. Here we note that little attention has been paid to
the effect of hydrodynamic flow on systems with contin-
uous symmetry. In this article we solve numerically the
hydrodynamic equations of motion for the nematic 3× 3
tensor order parameter in two space dimension and in-
vestigate the effect of hydrodynamic flow on the kinetics
of the nematic-isotropic phase transition of a uniaxial ne-
matic system, which has not been studied so far.

Hydrodynamic equations for the nematic order param-
eter Qαβ(r, t) and the fluid velocity vα(r, t) were derived
by Olmsted and Goldbart [19] to investigate the effect of
shear on nematic-isotropic transition. We investigate here
the effect of the flow induced by the stress due to molecu-
lar orientation, and we do not consider the situation with
external flow like shear.
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We assume the incompressibility of the system and
consider isothermal processes. The equation of motion for
Qαβ(r, t) can be written as [19](

∂

∂t
+ vγ∂γ

)
Qαβ + κ[a]

ανQνβ −Qανκ
[a]
νβ = β1κ

[s]
αβ

+
1

β2
H

[s]
αβ + θQαβ , (1)

where Greek indices represent x, y and z and ∂α ≡ ∂/∂xα.
καβ ≡ ∂αvβ is the velocity gradient tensor and Hαβ ≡
−δF{Qαβ}/δQαβ is the molecular field, F{Qαβ} being
the free energy of the system which will be given later. β1

and β2 are transport coefficients. θQαβ is a thermal noise
satisfying the fluctuation-dissipation theorem. The super-
scripts [s] and [a] denote the symmetric-traceless part and
the antisymmetric part of a second-rank tensor, respec-
tively. Hereafter summations over repeated indices are im-
plied. The equation of motion for vα(r, t) is

ρ

(
∂
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)
vα = ∂γσγα + θvα, (2)

∂αvα = 0, (3)

where ρ is the density and a thermal noise term θvα satis-
fies the fluctuation-dissipation theorem. Equation (3) rep-
resents the incompressibility of the fluid. The total stress

tensor σαβ can be expressed as σαβ = σ
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αβ +σ
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(torque) part and the distortion part, respectively and are
given by

σ
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αβ − β1H

[s]
αβ , (4)

σ
i[a]
αβ = H [s]

ανQνβ −QανH
[s]
νβ , (5)

σd
αβ = −

δF

δ(∂αQµν)
∂βQµν . (6)

The isotropic pressure part −pδαβ ensures the incompress-
ibility condition. β3 in equation (4) is a third transport
coefficient, and the same coefficient β1 appears in equa-
tions (1, 4) to satisfy the Onsager reciprocal theorem [19].
Olmsted and Goldbart [19] neglected the dependence of
β1, β2, and β3 on the order parameter Qαβ , because they
considered the situation close to a weakly first-order tran-
sition point with small Qαβ. We also treat them simply
as constants, although hereafter we consider a situation
where isotropic states become unstable and Qαβ is not
necessarily small.

The free energy F is the sum of the Landau-de Gennes
free energy FL and the distortion energy Fd. FL is given
by the power series expansion in Qαβ up to fourth order
and can be presented as [3]

FL =

∫
dr

(
1
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AQαβQαβ +

1

3
BQαβQβγQγα

+
1

4
C(QαβQαβ)2

)
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Let us suppose the case, A < 0, where the isotropic state
with Qαβ = 0 becomes unstable. Fd can be taken to be

Fd =

∫
dr

(
1

2
L1∂αQβγ∂αQβγ +

1

2
L2∂αQαβ∂γQγβ

)
, (8)

where L1 and L2 are elastic moduli. When L2 = 0, rota-
tions of the reference frame and orthogonal transforma-
tion of the order parameter tensor are uncorrelated,which
greatly simplifies calculations. For instance, molecular field
due to Fd becomes −δFd/δQαβ = L1∇2Qαβ . That is,
the choice L2 = 0 yields the one constant approximation
(K1 = K2 = K3) in the Frank elastic energy [3]. It should
also be noted that if we take L2 = 0, no anisotropy ap-
pears in Fd and Hαβ even in a two-dimensional system
where the derivative with respect to z is not considered
(∂z = 0). Thus we consider the situation L2 = 0 hereafter.

We numerically integrate equations (1, 2) in the Eu-
ler scheme on a two-dimensional 256 × 256 square lattice
with the periodic boundary conditions. We take the x-y
plane as the plane of the system and we assume vz = 0
and ∂z = 0, supposing a thin film system. We empha-
size that Qαβ is a 3 × 3 tensor, not a 2 × 2 tensor. It
implies that directors can point to any direction in three-
dimensional space, although we consider two-dimensional
systems. We also assume the Stokes approximation 0 '
ρ(∂/∂t+ vγ∂γ)vα = ∂γσγα as is usual for liquid crystals.

In all our simulations we set A = −4.5, B = −6, C =
5, L1 = 0.5, L2 = 0, β1 = β2 = 1,∆x = 0.5, and ∆t =
0.05. β3 is set to 2, 5 or 20. When we take smaller β3, vα
becomes larger and fluid flow becomes more important.
As the initial condition at t = 0, Qαβ at each lattice point
are random numbers uniformly distributed in [−0.02, 0.02]
satisfying Qαα = 0 and Qαβ = Qβα. Thermal fluctuation

is incorporated only in the initial conditions and θQαβ and

θvα in equations (1, 2) are neglected in our simulations.
In Figure 1 we show time evolution of the Schlieren

patterns for the hydrodynamic case with β3 = 2 and
the purely dissipative case without hydrodynamic flow

(∂Qαβ/∂t = (1/β2)H
[s]
αβ). Larger Q2

xy is clearly observed
in the hydrodynamic case, indicating that directors have a
remarkable tendency to align parallel to the x-y plane. To
see more quantitatively, we show in Figure 2 time evolu-
tion of the spatial and statistical average 〈Qαβ〉. Statisti-
cal average is taken over 50 independent runs. We can see
that 〈Qαβ〉 acquires a finite value in the case with hydro-
dynamic flow, while 〈Qαβ〉 remains zero without hydrody-
namic flow. We also find that in the case with hydrody-
namic flow, 〈Qxx〉, 〈Qyy〉 and 〈Qzz〉 approach 0.25, 0.25
and −0.5, respectively, while 〈Qxy〉, 〈Qyz〉 and 〈Qxz〉 re-
main zero. This result can be understood by the following
arguments: FL given in equation (7) acquires its minimum
when

Qαβ =
3

2
S

(
nαnβ −

1

3
δαβ

)
, (9)

where nα is a unit vector of arbitrary direction and S is a
positive solution of 2A+BS + 3CS2 = 0 when A,B < 0.
If we take the average of equation (9) with the condition
that nz = 0 and nα can point to any direction isotropically
in the x-y plane, we obtain

〈Qxx〉 = 〈Qyy〉 =
1

4
S,

〈Qzz〉 = −
1

2
S, (10)

〈Qxy〉 = 〈Qyz〉 = 〈Qxz〉 = 0.

For the parameters in our simulations, S = 1 and equation
(10) coincides with our numerical results.

To confirm the above tendency analytically, we per-
form a linear stability analysis of the isotropic stateQαβ =
0. The fluid velocity vα can be represented in terms ofQαβ
under the Stokes approximation, and the equation of mo-
tion (1) becomes, up to linear order in Qαβ,

∂

∂t
Qαβ(q) ' Λαβµν(q)

1

β2
H [s]
µν

' −Λαβµν(q)
1

β2
(A+ L1q

2)Qµν(q),
(11)

where Qαβ(q) is the Fourier transform of Qαβ(r), q being
the wavenumber. Note that L2 = 0 is assumed again in
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Fig. 1. Schlieren patterns obtained for (a) the purely dissipative case and (b) the hydrodynamic case (β3 = 2). Darkness
represents Q2

xy. The numbers are the time steps. Under the same initial conditions.

the second line of equation (11). The tensor Λαβµν(q) is
given by

Λαβµν(q) = δαµδβν +
β2

1β2

β3q4
qµ{qα(q2δβν − qβqν)

+qβ(q2δαν − qαqν)}. (12)

Λαβµν is essentially a 5 × 5 matrix because Qαβ is sym-
metric and traceless and has only 5 independent compo-
nents. Calculation of the eigenmodes of the tensor Λαβµν
is straightforward and under the condition qz = 0 (which
implies ∂z = 0) and vz = 0, it can be shown that four out
of the five eigenmodes have the eigenvalue 1, and that the
rest eigenmode

(Qxx −Qyy, Qxy, Qxz, Qyz, Qzz) ∝ (4qxqy, q
2
y − q

2
x, 0, 0, 0)

(13)

has the eigenvalue

λ = 1 + (β2
1β2/β3), (14)

greater than 1 and independent of the wavenumber q. We
can see from equation (14) that λ becomes large with large
β2 and small β3. β2 is proportional to the relaxation time
of the orientational order (without flow) and β3 corre-
sponds to the viscosity of the fluid. Therefore the effect of
hydrodynamic flow becomes more pronounced when ori-
entational order relaxes more slowly and the fluid is less
viscous. We emphasize that hydrodynamic correction can
be crucial. In fact, we estimate λ ' 9 using the parameters
of MBBA, β1 = 0.9 and β3 ' 0.1β2 [19]. In our simulations

we used a larger value β3 = 2(= 2β2) to avoid numeri-
cal instability. Equation (13) implies that the mode which
grows fastest is parallel to the x-y plane. Without hydro-
dynamic flow and with L2 = 0, neither the free energy F

nor the equation of motion ∂Qαβ/∂t = (1/β2)H
[s]
αβ prefers

any direction and thus the statistical average 〈Qαβ〉 should
be zero. This does not imply that the spatial average of
Qαβ for one system (Qαβ) should be zero; Qαβ 6= 0 due
to spontaneous symmetry breaking. On the other hand,
hydrodynamic flow breaks the symmetry of the dynamics
as discussed above. Therefore 〈Qαβ〉 becomes non-zero for
the hydrodynamic case.

To check how late stage dynamics is modified by hydro-
dynamic flow, we calculate from our numerical results the
correlation length L(t) and the number of defects N(t).
For the definition of L(t), we use the correlation function
for the order parameter defined by

C(r, t) =〈∫
dr′(Qαβ(r′, t)−Q0

αβ)(Qαβ(r′ + r, t)−Q0
αβ)∫

dr′(Qαβ(r′, t)−Q0
αβ)2

〉
. (15)

For the hydrodynamic case we take Q0
xx = Q0

yy = 1/4,

Q0
zz = −1/2, and Q0

xy = Q0
yz = Q0

xz = 0, and for the

purely dissipative case Q0
αβ = 0. It follows from the defini-

tion that C(0, t) = 1. We define L(t) through C(L(t), t) =
1/2.

We show the time dependence of L(t) and N(t) in Fig-
ure 3 for the purely dissipative case and the hydrodynamic
cases with β3 = 2, 5 and 20. We also calculate the growth
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Fig. 2. Time evolution of 〈Qαβ〉 for the hydrodynamic case
with β3 = 2 (solid lines) and for the purely dissipative case
(dashed lines). Average is taken over 50 independent runs.
Symbols are common to both cases.

exponents, φc for L(t) and φdef for N(t), defined by

L(t) ∼ tφc ,
N(t) ∼ tφdef .

(16)

For the purely dissipative case φc = 0.402 ± 0.002 and
φdef = −0.751± 0.005, which reproduces the results ob-
tained by Zapotocky et al. [11] For the hydrodynamic
cases φc = 0.432 ± 0.002 and φdef = −0.868 ± 0.005 for
β3 = 2, φc = 0.428± 0.002 and φdef = −0.845± 0.004 for
β3 = 5 and φc = 0.402± 0.003 and φdef = −0.809± 0.002
for β3 = 20. All the exponents are calculated by using the
data from 500 to 8000 time steps. We find that hydrody-
namic flow only slightly fastens the transition kinetics.

Here we make a comment on the relation between these
two exponents φc and φdef . If dynamical scaling holds and
a single length scale L(t) can characterize the late stage
property of the phase transition kinetics, N(t) should be-
have as N(t) ∼ L(t)−2, hence

φdef = −2φc, (17)

for the two-dimensional system we consider. For the case
without hydrodynamic flow equation (17) does not hold
and dynamical scaling hypothesis is violated in spite of
the good collapse of the scaled correlation functions [11].
On the contrary, equation (17) holds well for the hydrody-
namic cases. It may show, together with a good collapse of
the scaled correlation functions C(r/L(t), t) shown in Fig-
ure 4, that dynamical scaling holds for the hydrodynamic
cases.

To see why hydrodynamic flow does not significantly
affect the late stage phase transition kinetics, velocity pro-
file shown in Figure 5 may be helpful. This indicates that
in the late stage fluid flow is important only in the vicin-
ity of the topological defects. In the nematic systems we
consider, topological defects are points in two dimensions
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Fig. 3. Time evolution of (a) the correlation length L(t) and
(b) the number of defects N(t).
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Fig. 4. Scaled correlation functions C(r/L(t), t) for the hydro-
dynamic case with β3 = 2. The numbers are the time steps.
Average is taken over 50 independent runs. A good collapse on
a single master curve is observed except for the tail.

(lines in three dimensions) and are not expected to in-
duce fluid flow when distances between defects are long.
In binary fluid mixtures, in contrast, fluid flow is induced
by lines in two dimension (surfaces in three dimensions)
and thus greatly affects the late stage kinetics [12,13]. We
also note that the effective kinetic coefficient Λαβµν(q)/β2

appearing in the linearized equation of motion (11)
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(a)

(b)

Fig. 5. 78 × 78 portions of the Schlieren pattern (a) and the
corresponding velocity profile (b) at 15000 time step for β3 = 2.
Note that fluid flow is important only in the vicinity of the
topological defects.

depends only on the orientation of the wavevector q and
is independent of the magnitude of q. This implies that
hydrodynamic flow gives a marginal contribution to the
dynamics, which is essentially independent of the length
scale characterizing the late stage properties of the phase
transition kinetics.

In summary, we have investigated the phase order-
ing kinetics of uniaxial liquid crystal systems undergo-
ing nematic-isotropic transition by numerically solving the

equations of motion for the orientational 3× 3 tensor or-
der parameter and the fluid flow in two dimensions. The
statistical average of the order parameter acquires a finite
value in contrast to the case without hydrodynamic flow,
which indicates that hydrodynamic flow induces the ori-
entational order parallel to the plane of the system. This
can be understood by the linear stability analysis of an
isotropic state, which shows that one of the modes grows
faster than the others due to hydrodynamic flow, leading
to the asymmetry of the kinetics. In the late stage, the
fluid flows do not affect remarkably the coarsening kinet-
ics. However, when hydrodynamic flow is incorporated,
the relation between the growth exponents φdef = −2φc

holds well in contrast to the case without flow. This rela-
tion together with a good collapse of the scaled correla-
tion functions may indicate that dynamical scaling holds
for the hydrodynamic cases.
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